
International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1244
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 A Revised Algorithms for Deadlock Detection and
Resolution in Mobile Agent Systems.
 Rashmi Priya (TMU Research Scholar,India)

Abstract

A study on Deadlock detection is being done for many years. Not much work has been done on Deadlock resolution.
Wait –for model approach followed to avoid deadlocks offers incorrectness to many algorithms after deadlocks have been resolved.
 In this paper, a theoretical framework for wait-for systems is provided, and general characteristics of a correct algorithm for deadlock
detection and resolution are presented.
It is shown that the computational upper bounds(number of messages) for deadlock detection and resolution are both O(n3) in the worst
case when n transactions are involved. This result is better than previous ones, which often are even exponential. In addition, two correct
deadlock detection and resolution algorithms are described which both achieve these upper bounds.

Keywords : Mobile Agents, distributed computing, wait –for model, complexity.

1. Introduction
In recent years, a large number of algorithms for deadlock
detection in distributed computing systems has been proposed.
In the area of distributed databases, to which the attention is
restricted in this paper, deadlock situations arise when locks on
data objects are used in scheduling concurrent transactions. As a
consequence, deadlocks need to be detected and then resolved .
As has been pointed out by these and other authors , three
problems arise in many of these proposals: First, some of them
are incorrect in that they may either detect false deadlocks, or fail
to detect real ones.
Second, deadlock resolution is sometimes neglected or not
handled properly ; the latter is often the reason for errors
occurring in the detection of (subsequent) deadlocks, since the
wait-for relationship maintained by the algorithms is not
updated correctly. Third, not enough attention is paid to the
computational complexity of deadlock detection and resolution.
For example, proposes an algorithm requiring the transmission
of exponentially many messages for deadlock detection in the
worst case, which is unacceptable in practical applications.

These three problems are addressed in this paper. We begin by
providing a theoretical framework for wait-for systems that are
employed to model a distributed environment, as it pertains to
scheduling concurrent transactions. We then show that the
upper bound for the number of messages to be transmitted
during deadlock detection and resolution (and hence the overall
time
complexity) is O (n3) when n transactions are involved. Next,
we investigate how these results obtained for a static
situation carry over to the dynamic case as well. To this end, we
give a characterization of when a deadlock detection and a
resolution algorithm is “correct”, respectively. Finally, two
algorithms are presented, which differ in the use of priorities
assigned to nodes of a wait-for graph, and it is shown that both
are correct and achieve the upper bounds derived earlier. It

should be pointed out that other recent papers also address the
issues discussed here. In particular, [9] gives a thorough
evaluation of various algorithms for deadlock detection
(neglecting resolution), and discusses many issues related to
them. Also, the work of Roesler is notable in this context for its
detailed discussion of all three problems mentioned above, and
for the provision of polynomial and provably correct solutions.
The model used in these papers is an object-oriented one based
on abstract data types, so that the approach is only partially
comparable .

The organization of this paper is as follows: In Section 2, we
introduce a graphical model for wait-for systems. This model
will allow us to derive precise upper bounds for the complexity
of deadlock detection and resolution algorithms; to this end, we
will show (1) that the upper bound on time is O(n3) for both
detection and resolution, and (2) that the upper bound on space
is O(n3),w here n is the number of transactions/processes
involved. In Section 3, we consider the dynamic case, in which
the complete wait-for graph is changing over time. Criteria for
correct deadlock detection in this case are provided. We present
two new algorithms for deadlock detection and resolution in
Section
4, which actually achieve the upper bounds. In Section 5 we
survey previous work in some more detail and in particular
exhibit a classification of relevant algorithms which captures
their essential
features. Finally, we sketch several questions that deserve
further study in Section 6.

2. Wait-For Systems: The Model and Its Static View
In this section, we present our model of a (distributed) system
which, due to the use of locks in the scheduling of transactions,
is subject to deadlocks and hence calls for their detection and
resolution; we assume that deadlocks are indeed possible in the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1245
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

system, and we are therefore not interested in algorithms for
deadlock prevention.
Informally, in such a system there exist processes or transactions
which operate on shared resources; any available resource can be
used by several transactions at a time in shared mode, or
by at most one at a time in exclusive mode. If a resource is in
(exclusive) use, any other transaction trying to access it has to
wait for the first to release the resource. A deadlock occurs when
two or more transactions are waiting for each other in a cyclic
manner.
 In a distributed computing system, typically no single site has
full knowledge of the entire system; thus, we assume, without
loss of generality, that upon the occurrence of a resource conflict,
each transaction or process must react accordingly (by sending
messages) and independently (without reporting to a central
site).
Formally, such a wait-for system can be modeled using a
directed graph, the wait-for graph (WFG), defined next.
Definition 1 (Wait-For Graph) A wait-for graph (WFG) G = (V,E)
is a directed graph, where the set V of nodes represents
processes or transactions, and the set E of edges represents
resource dependencies between nodes s.t. an edge e from v1 to
v2 indicates that v1 is waiting for v2 to release a resource.
Nodes having out-degree zero are called active; all others are
called blocked.

This model will serve as a standard metric to analyze the
complexity of deadlock detection/resolution algorithms. We also
assume that any WFG G under consideration has no self-loops
on nodes. A sample WFG is shown in Figure 1. In order to
describe a (possibly transitive) dependency between two distinct
nodes, it is convenient to talk about one path through a WFG at
a time:

Definition 2 (Wait-For String) Let G = (V,E)b e a WFG. A wait-for
string (WFS) S is a path through G (without loops). Every node v
E V appearing in S has at most one incoming and one outgoing
edge, and there exist at most two nodes r, h E V s.t. r has no
incoming edges, whereas h has no outgoing edges. r is called the
root or tail of S, and h is called its head.

For example, in Figure 1 (v1,v3,v4) is a wait-for string. The next
definition introduces useful shorthands for a further discussion
of wait-for strings:

Definitions 3 (Down-Stream, Up-Stream) Let G = (V,E) be a
WFG, and let v E V. The down-stream of v, denoted DS(v),
consists of all nodes in V for which v is either directly or
indirectly waiting, i.e., the nodes v' E V s.t. v is followed by v' in
a WFS S. Similarly, the up-stream of v, denoted US(v), consists
of all nodes in V which are waiting for v directly or indirectly,
i.e., all nodes preceding v in S. The edges of v'S down-stream
[up-stream] are called the down-stream [up-stream] edges of
v,resp.

A down-stream DS(u) is called essential to U if no node U' of the
upstream of U can reach a node in the down-stream without
passing through U, i.e., U' cannot bypass U on another
downstream.
An essential down-stream node & of node U is a downstream
node of U s.t. for every path formed between a node d, d E US(u)
U{v}, and k, this path must include U. The outgoing
edges of k are called the essential down-stream edges of U. Note
that an articulation point [I] is always an essential downstream
node of its upstream nodes, but the reverse is not true in
general.
In the example above, {v3,v2,v4} = DS(v1), {v1,v2,v3} = US (v4) ,
and {v2 ,v4 }=D S(v3) is essential to v3. We now consider a static
situation in which some WFG G is given, and there exists an
"oracle" that is able to tell us about cycles. Our first result, which
is interesting in its own right, shows
that in an arbitrary graph G = (V,E), there are exponentially
many cycles in the worst case:
Lemma 1 Let G = (V,E)be a WFG, I V I= n. Then there are up to
O(n!) cycles in G.
Proof. For n nodes, the possible cycles are formed by 2 nodes, 3
nodes, . . ., and n nodes, and for each cycle involving i nodes,
there are (i - I)! possible permutations. Since each permutation
yields a different cycle, the total number of possible cycles
results from a summation of C(n,2), C(n,3), . . ., C(n,n), where C
is the combinatorial selection function, i.e., the total number of
cycles
equals n! = z-E O(n!) our claim follows.
Since it is thus impossible in practice to keep track of all cycles in
a WFG, we next explore a possibility to detect all cycles in a
given WFG without explicitly tracking them: Given a WFG
G, let cyc(G) denote the set of all cycles in G, each of which
represents a deadlock situation. If G has nodes 1, . . . , n, we can
distribute the members of cyc(G) into n groups (to which we
refer as cycle-break pupa throughout the paper) GI,. . . ,Gn s.t. a
cycle C E cyc(G) belongs to G; if i E C. Now we have: Lemma 2 If
G;, , . . . , G;*-, is a selection of n - 1 distinct cycle break groups,
then
n- 1 U Gij = cyc(G) j=1
Proof. Assume, on the contrary, that the union of all groups in
the given selection does not equal cyc(G). Then there must be a
cycle C E cyc(G) which is not in Gij for each j E (1,. . . , n -
1). Thus, cycle C does not go through nodes i1 , .. . ,i n-1 which
implies that C goes through the one node in only, a
contradiction to the exclusion of self-loops on nodes. We next
consider the (time and space) complexity of cycle detection and
resolution. Since we are considering a static case, let a WFG G be
given, and let G contain cycles. (Notice that depth-fist search as
described in [1] cannot be applied due the fact that we consider a
distributed environment.) In order to detect the cycles, we color
the edges of G, using the oracle, in such a way that a unique
color corresponds to each individual cycle-break group. Thus, an
edge will be assigned as many colors as there are cycles in which
it appears. Then, in order to break a cycle, colors are removed

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1246
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

from edges as appropriate, again by referring to the oracle. We
assume that each addition or removal of a color to or from a
single edge can be performed in one unit of time, and that each
color needs one unit of space. Now we have: Theorem 1 (Upper
bound for detection) To detect all cycles in a given WFG with n
nodes, the maximum number of operations needed is O(n3).
Proof. By Lemma 2, if we can detect n - 1 of the n possible cycle-
break groups, then we can detect all cycles in G. If each such
group is identified by a different color, then each edge in a WFG
will be colored at most n - 1 times. Since there are at most (n - 1)n
edges in G, we only need (n - 1)(n - 1)n coloring operations to
detect all cycles, which is O(n3).
Notice that in the above theorem, we do not distinguish between
deadlock cycles which belong to the same cycle-break group.
Corollary 1 (Upper bound for resolution) To break all cycles, at
most O(n3) operations are needed.
Proof. As in Theorem 1, each edge can get at most n - 1 colors;
thus, to remove all colors, an edge has to be accessed up to n – 1
times. Since there are <= (n - 1)n edges, this requires <= (n -1) (n
- 1)n
 E O(n3) steps.
By similar arguments, we can easily obtain an upper bound of
O(n3) for the space requirement of a given WFG with n nodes.
The next question that we consider is if and how these upper
bounds can actually be achieved, since an "oracle" will not be
available in reality. After this, we apply the techniques obtained
to the (more realistic) dynamic case in the next section.
 We exhibit a (static) method for keeping track of wait-for
dependencies next. As a consequence of the above results, we
adopt the cycle-break group idea as follows:
We assign each node a unique color. In order to detect cycles, we
color the edges in the WFG as before by sending the color of a
node along all its outgoing edges in a coloring probe; whenever
a color is received by some node, it forwards it further. To break
cycles, edge-colors are removed by sending around cleaning
probes. Each addition or removal of a color to or from a single
edge is counted as one step. Every coloring or cleaning probe
needs one unit of space (for storing the representation of a color).
When a coloring probe visits an edge, the edge stores the color
carried by the probe, and the edge is said to be colored with that
color. When a cleaning probe visits an edge, the color carried by
the probe is removed if the edge was colored with it.
(We assume that both the edges and the nodes in the WFG can
pile as many colors as required.)
A cycle with color c is detected if a probe tagged with c is
returned to the node colored by c. Similarly, a cycle with color c
is resolved, if c is erased from every edge of the cycle colored
with c. A colored cycle C cannot simply be broken by erasing the
color of C from all corresponding edges, since this color is not
confined within that cycle only. Following the routes of a
coloring
process, the down-stream edges of a node U are colored with the
same color as v, which is indicated by "v-c*-> w", where the
asterisk indicates a (direct or indirect) wait-for relationship, and

w E DS(v). (To simplify our discussion, we will omit the symbol
c whenever confusion can be excluded.) The above indicates that
we need to erase c from all edges corresponding to the
downstream of v, if v is chosen as the victim. In order to erase
the exact amount of the colors, we must proceed carefully.
Consider the example in Figure 2, which is identical to that in
Figure
1 except we associate colors with the wait-for edges. We also list
some of the wait-for dependencies which are relevant to our
discussion; note that not all nodes on a cycle are always capable
of detecting a deadlock.
Here we assume that colors a, b,c, and d are assigned to nodes
v1,v2,v3, and v4, respectively. If v3 is chosen as the victim, all
colors should be erased from the edges (v3,v2) and (v2,v3). In
addition, colors a, b and c need to be removed from edge (v3,v4).
On the other hand, if v2 is chosen as the victim, b should be
removed from edge (v3,v4), but not a and c. Thus, the relation v1
of v4 still exists, because the deletion of node v2 should not affect
the wait-for condition between v1 and v4.It follows that before
we can determine the cost of a deadlock detection and resolution
algorithm, we need to know what makes a dynamic algorithm
correct. The next section addresses this question.

3 The Dynamic Case and its Correctness
Criteria
In a dynamic situation, a given WFG changes over time. In
addition, the problem of message-propagation delay in the
distributed system arises. As a consequence, the model
presented
above has to be slightly modified in order to reflect the dynamic
situation; in particular, we make the following assumptions: (1)
The underlying computer network is fault-free. (2) No messages
are received in error. (3) All messages arrive at their respective
destination in finite time. Properties 1 and 2 free us from the
problems which are related to faults. After a node sends out a
resource request, but before this request has been acknowledged,
the node is in an idle state. During the idle period, the node will
not process any new probes received. Because of Property 3, the
period of the idle state is finite, and there is no possibility for a
node to wait forever.
First we introduce a notion which captures the correct wait for
relationship between victims and
heir down-streams:
Deflnition 4 (Down-Stream Informality) Let A be an algorithm for
cycle resolution. Suppose that A is applied to a cycle C, and that
during the resolution of the deadlock represented by C node U is
chosen as the victim to break C. If the set R of inward colors of U
is removed from every edge in the essential down-stream of U,
then we say that A has down-stream infomality.We turn to the
issue of correctness next. Clearly, a deadlock detection algorithm
is correct if it detects all real cycles and no false ones; a deadlock
resolution algorithm is correct simply if it is able to resolve a
deadlock. However, since distributed systems face the problem
of propagation delay of messages, a cycle detection and
resolution algorithm may detect false cycles due to this delay.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1247
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Clearly, this factor is difficult to eliminate and will therefore not
be considered further here.
In [21] it is claimed that a DBMS employing 2PL will not
introduce false deadlocks. However, this is not true in general,
since after a deadlock has been detected and resolved, false
deadlocks can still be detected under several circumstances; to
see this, the algorithm described in [17] (which employs 2PL) can
be taken as an example. [20] and [4] have shown that [17] either
detects false deadlocks or ignores real deadlocks under several
circumstances.
Thus, the use of 2PL is neither sufficient nor necessary for correct
deadlock detection.
Another problem that should be taken into consideration can be
seen from the following example. Consider Figure 2 once more:
After u3 has been chosen as the victim and before the
corresponding
message can be received by node u4, a new edge introduced
between nodes u2 and u4 will let the algorithm conclude that a
new cycle is formed among u2, u3 and u4. For this reason, we
assume there is no time delay when considering whether an
algorithm is correct. Now the following is obvious:

Lemma 3 A cycle detection algorithm is correct if it can calculate either
all WFSs or all cycle-break groups.
Proof. The first condition is obvious. For the second, it follows
from Lemma 2 that every cycle belongs to certain cycle-break
groups. Thus, detecting all cycle-break groups actually detects
all deadlocks.
Lemma 4 A cycle resolution algorithm is correct if and only if it
has down-stream informality.
Proof. When a cycle is broken by deleting a victim node v and its
adjacent edges from a WFG, the following issues have to be
addressed:
The set R of inward colors of v is removed completely from the
cycle-break group Gv , v is removed completely from the
essential downstream edges of v. The former means that all wait-
for dependencies passed through the victim node v must be
removed completely. Because after v is removed, any node k E
US(v) may not wait for nodes w E DS(v),and the wait-for
information stored in any such w should be updated
accordingly. The latter states how the wait-for information
should be modified. The claim of the lemma can now be proven
as follows: (only if) This direction is obvious, since a correct
algorithm should erase the victim’s color from every essential
down-stream edge.
(if) Down-stream informality actually says that a color c E R will
be removed from an edge e E DS(u) if and only if there are no
paths which can be used to pass a c-colored probe to e other than
through v. Informality, thus, guarantees to remove the
dependency between U and its down-stream correctly.
By Lemmas 3 and 4, we have: Theorem 2 (Correct
detection/resolution requirements)
A cycle detection and resolution algorithm is correct if it satisfies
the following two conditions:

1. The algorithm calculates all WFSs or all cycle-break groups. 2.
When a cycle is broken, it has down-stream informality. 4
Efficient Dynamic Algorithms When a WFG is dynamically built
and modified according to the propagation of probes, it is
impossible to know in advance which nodes will participate in a
cycle and therefore become candidates for victims. On the other
hand, no more than n victims can be chosen in a WFG that has n
nodes. Even though there are no more than n - 1 cycle-break
groups, in order to keep track of all possible cycles and non-
cycles we will assign each node a unique color. We first
introduce a correct cycle detection/resolution algorithm which
stays within the upper bounds established earlier. The algorithm
is then modified to reduce its average cost to one half the worst
case cost by introducing priorities.
4.1 A Naive Algorithm
Every node is assumed to have a unique color. A node generates a
coloring probe for each outgoing edge at the time the edge is fist
generated. A coloring probe is received and forwarded unless
the received color is identical to the color of this node, in which
case a cycle is detected. Next, a cleaning probe is generated by
the detector which itself is the victim. Now note that every edge
in a WFG can be colored up to n times for a WFG with n nodes.
Thus, in order to color all cycles in a dynamic setting, n2(n - 1)
coloring probes are needed, which is still O(n3). Corollary 2 To
dynamically color and detect all the cycles in a WFG G = (KE) ,
where IV(= n, at most O(nS) coloring probes are needed.
Corollary 3 To break all possible cycles in a dynamic
environment, the number of cleaning probes is O(n3) in the
worst case.
The following algorithm is divided into two parts, which are to
be executed in an alternating fashion. Part 1 deals with detection,
while Part 2 handles resolution. As in the static case, a node is
considered to be active if it has no outgoing edges, and it is
considered blocked otherwise. We use the following notation:
The set of inward colors of node a, i.e., the union of the colors of
each incoming edge of i, is denoted e;, and the set of the colors in
an edge (k, i) is denoted coZ(k, i). Also, let 0; be the union of the
color of node i and its inward colors 0;. Each outgoing edge of
node i has exactly the same color set as @i.

Algorithm I: Cycle Detection

Initialization Every node i is assigned a unique color r; Probe
Initialization If a node i is blocked by another node j, an edge (i, j
) is created, and for each color r, E Oi, node I sends a coloring
probe to this (i, j) edge. at edge (k, i), the following steps are
performed:
Probe Propagation When a probe r, is received by a node i
1. check for cycles. A cycle is found if a node receives its own
color back. If a cycle is found, the probe propagation phase is
terminated and the cycle resolution protocol is executed.
Otherwise, continue with the next step.
2. r'' e {r,} - 0;
3. coZ(k,i) -+ rpUcoZ(k,i)
4. Forward the new probe r', to every outgoing edge if

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1248
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

{+,} # 0. Otherwise, or if there are no such edges, rlp
is discarded.
Algorithm I: Cycle Resolution
Cleaning Probe Initialization The node i which detects the cycle
removes itself from the cycle by switdring to the aborting phase:
For every color k E @; a cleaning probe is created and sent to all
its outgoing edges; then the aborting node i deletes all its
adjacent edges and itself from the WFG.
Cleaning Probe Propagation When an node I receives a cleaning
probe r, through the edge (IC, i), the following steps are
executed:
1. coZ(k,i) -+ coZ(h,i) - r,
2. r', + {r,} - 0;
3. if there are no outgoing edges then r', is discarded, and
the probe propagation is terminated. Otherwise, the
next step is executed.
4. Forward the new probe r> to every outgoing edge if
{ri} # 0; otherwise r> is discarded.
5. a new owner is elected, if available, from the waiting
nodes, and a new cycle detection phase starts by
entering the probe initialization phase for all waiting
nodes.
It should be noted that when a node is in the phase of either
committing or aborting, it will not forward any probes.
Theorem 3 Algorithm I is correct.
Proof. To show that Algorithm I is correct, we first show that it
detects all cycle-break groups; then we show that it possesses
down-stream informality. Since edges and probes can be created
only due to resource waiting (probe initialization), a node
receiving its own color indicates that there is a cyclic wait
condition, and a cycle-break group is found. Step 3 of the cycle
detection phase assures that the edges faithfully record all
passing colors.
Step 3 combined with Step 2 optimizes the algorithm; Steps 2
and 4 guarantee that the color of every cycle-break group will be
forwarded along the group's wait-for paths. Thus, all WFSs will
be properly visited; hence, the algorithm detects all cycle-break
groups.
To see that Algorithm I possesses down-stream informality, we
notice that a victim passes every color which it has received
(including its own) to its down-stream. Step 2 of the resolution
phase forwards a cleaning color if and only if it is essential. Thus,
Algorithm I has down-stream informality.
Theorem 4 Algorithm I achieves the upper bounds given
previously.
Proof. During the detection phase, Step 2 allows only new colors
to pass through each node. Therefore, each color probe can paint
an edge only once. Hence, at most O(n3) probes are transmitted,
assuming the wait-for system contains n nodes. In the resolution
phase, Step 2 assures that a cleaning probe of a particular color
can traverse any edge only once. Hence, the number of cleaning
probes transmitted is also O(n3). Our claim follows.
Corollary 4 For an exclusive-lock only wait-for system, the
minimum number of probes for the worst case is O(n2).

Proof. If we allow exclusive locks only in the wait-for system,
there is at most one outgoing and one incoming edge for each
node, which implies that there are O(n) edges in total. Thus, only
O(nz) probes are needed to detect and resolve all possible cycles.
'This algorithm is similar to the one given in [13]; however, with
the optimization in Step 4, we cut the number of the probes
needed from exponentidy many to O(n'). 'The owner of a
resource is a transaction not blocked at this resource.
4.2 A Priority Based Algorithm
We next describe how Algorithm I can be improved. To this end,
we observe that if a cycle involves nodes kl, kz,. . . , k,, only one
node needs to send a probe and detect the cycle. It remains to
determine which one should be selected as the sender of this
probe. If a total ordering3 is imposed on the colors of all nodes
and a color Tk is forwarded by node i if and only if t k > r; holds,
it can be shown that this prioritized protocol needs
approximately one half of the amount of probes transmitted by
Algorithm I. Note that similar approaches have been proposed in
[2,14,17,20].
Lemma 5 For a totally ordered cycle, only the probe with the
highest priority detects the cycle.
Proof. First note that for every cycle there is a node which has
the highest priority, because the nodes are totally ordered. Next
we assume each node assigns the probes initiated from it with its
own priority. To detect a cycle, a probe must walk through every
node of the cycle. If a probe a is passed through every node,
then, according to the probe propagating rule, r; > t k , for every
k in
the cycle, and k = i. Thus, t; must have the highest priority.
Theorem 5 The average number of probes needed to detect
deadlocks for a prioritized algorithm is one half of the amount
compared to naive algorithm.
Proof. Without loss of generality, we assume that there are n
nodes, and these are assigned the priorities { 1, . . ., n }, where 1 is
the highest. The number of times each edge leaving a node
of highest priority can be colored is one. Similarly, this number is
two for the node with the second highest priority, and so on.
Hence, the total number of probes is (1 +- 2 +- . . . +- n) .n - 1. The
last n - 1 indicates that there are n - 1 possible outgoing edges per
node.
We next modify Algorithm I by replacing the former Step 2 of
the Probe Propagation Phase with a new one as follows:
Algorithm 11: Cycle Detection
Initialization (as in Algorithm I) Probe Initialization (as in
Algorithm I)
Probe Propagation When a probe rp is received by a node a at
edge (k, i), the following steps are performed: check for cycles. A
cycle is found if a node receives its own color back. If no cycles
are found then continue; otherwise, start the resolution protocol.
if rp < col(i) then discard rp; otherwise, fp e {tp} -oi.
coZ(k, i) -e r; U coZ(k,i)
if rp > r; then forward rp to every outgoing edge of
node i. The cycle resolution protocol is the same as for Algorithm
I.
Corollary 5 Algorithm 11 is correct.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1249
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Proof. The only difference between Algorithms I and 11 is that 'A
total ordering can be created using Lamport's algorithm [lo]. the
priorities are introduced in Step 2 of the detection phase.
Thus, by Theorem 2 and Lemma 5, Algorithm I1 is correct.
Corollary 6 The priority based algorithm achieves the upper
bounds.
Proof. The claim follows immediately from Theorem 5.
5 A Taxonomy of Deadlock-Handling Algorithms
In order to study the complexity of distributed deadlock
detection and resolution algorithms proposed previously and to
compare them to our approach, we divide them into two groups
according to how the wait-for information is passed by the
detection and resolution protocols. We further divide each group
into two subgroups, and for each subgroup, we briefly analyze
its computation and storage costs.
5.1 Structured Protocols
Protocols which pass probes that contain structural wait-for
information are called strrcturedprotocols. By using the
structural wait-for information collected from the probes, a
partial wait-for graph can be constructed at each node, and these
nodes can use their WFGs to determine if a deadlock cycle is
formed and which parties are involved. Structured protocols can
be further classifled according to the degree of structural
information held by probes:
(1) Wait-For Strings (WFSs): Every node passes the probes which
contain WFSs to its down-stream. The algorithms reported in
[7,14,2,20]fa ll into this class. A deadlock is detected if a node h d
s a cycle in a WFS that just arrived.
The advantage of using WFSs is that deadlock detection is easy,
and that all parties involved are instantly known to the detector.
An obvious disadvantage is that WFSs have variable lengths
which makes probe transmission and storage more difficult.
Given a WFG G = (V, E) with n nodes, there may be O(n!) cycles
by Lemma 1; hence, there exist O(n!) possible wait-for strings.
According to the algorithm, each wait-for string is allowed to
pass through a node only once. This means that each node can be
traversed approximately O(n!) times, so that O(n!n) probes are
needed to detect all possible deadlocks. With respect to space
required, the size of a wait-for string is limited to be less than or
equal to n, and there are only n! possibilities, because
the merge option always keeps the longest WFS with the same
permutation. Therefore, O(n!n) space is needed. On the other
hand, deadlock resolution is cheaper w.r.t. the number of
cleaning probes needed: Since only the color of the victim is
included in the probe, no matter how many wait-for strings are
stored in an edge, the total number of the colors contained in an
edge does not exceed n - 1. Now it is easily versed that the
maximum number of probes needed to resolve all deadlocks is
O(n3).
As an example, consider Figure 3: Node N, receives the three
WFSs < Nl,N3 >, < N5,N3 >, and < N2,N3 >, and node Nz has
WFSs < NI, N3 >,< N5, Ns >, and < N3 >.
Figure 3: A Wait-For System and its Dependencies.

(2) Wait-For Edges (WFEs): In this class, probes contain the wait-
for edges of nodes only. A deadlock is detected if an incoming
edge contains the color of the receiving node. [ll] uses this
approach to build a partial global WFG at each site from which a
transaction joins the system. In [3] this scheme is used to
construct a WFG in the second part of the detection phase. This
approach has the advantage that every probe has a k e d size. For
instance, in Figure 3 node N2 receives (NI, N3),
(NS,N3), (N3rN2), and node N4 receives (Nl,N3), (NZ,N3), (N3,
N4), and (Ns, N3). Whether the number of probes passed in this
approach exceeds the WFS protocol described above actually
depends on the topology of the wait-for system. The complexity
of this class for the worst case is better than that of the WFS class.
To detect deadlocks, each edge lets no more than O(n2) probes
pass. This is due to the fact that no edge is forwarded which has
been encountered earlier, and there are at most O(n2) edges.
Thus, the total number of probes needed to detect all deadlocks
is O(n4).
To resolve deadlocks, the same complexity is obtained.
However, this can easily be improved as follows: Since the wait-
for strings can be reconstructed from the wait-for edges, only the
victim’s color needs to be sent. Thus, the cost of resolution is
identical to that of the class WFS. Finally, the space requirement
is O(n4), since each edge may store up to O(nz) edges.
Because edge-queues only store the colors of nodes, the space
required by this class is O(n3). Also, each edge allows up to n
different colors to pass through, so that the total number of
probes needed cannot exceed O(n3) for either deadlock detection
or resolution.
(2) Time-Stamped Wait-For Pools (TSWFPa): Each time a node
initiates a probe, it attaches its color and a timestamp to it. Both
timestamp and color are used to determine if a deadlock has
occurred. [3] suggests such a scheme in the first part of the
detection phase. One purpose of timestamps is to solve the
problem which arises when the wait-for information is not
persistent‘, another is to distinguish the wait-for information
generated by different wait-for edges of the same node. Using
timestamps, the original sender can detect if a received probe
initiated by the node is out-of-date, and (hopefully) distinguish
false deadlocks from real ones. However, as explained above,
even for an
algorithm which employs two-phased locking, which guarantees
the durability of the wait-for dependency, this is not sufficient to
guarantee freedom from false deadlocks.
The only difference between this class and the class WFP is that
in this class the probes are tagged with timestampes. For this
reason, each edge will accept up to O(nz) probes, and the total
number of probes needed -is O(n4) [12]. Since each queue can
accumulate no more than O(n) different colors, the regenerating
WFSs which puts their algorithm in the exponential class.
5.2 Non-Structured Protocols
If probes contain no structural wait-for information, the
corresponding algorithm is called non-structured. In this case no

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1250
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

waitfor graphs can be constructed. However, this does not
prevent
a deadlock/resolution algorithm to detect and resolve deadlocks.
Non-structured protocols can be classified as follows:
(1) Wait-For Pools (WFPs): Only the nodes’ colors are put into
the probes and propagated. Since a deadlock is detected by
finding that a probe returns to its original sender, algorithms
adopting this method only need to see if the color of a node is in
the “pool” of received probes. This pool represents the wait for
relationships space requirement is O(n3). Note that [3] resolves
deadlocks by
between the receiving node and the nodes whose colors are in
the pool, even though the detailed wait-for structure is not
known. Our algorithms described in Section 4 fall into this class.
The approach is not only conceptually simple, but also gives the
best performance. The size of a probe can be either fixed or
variable. This scheme is also partially implemented by the naTve
protocol suggested in [13]. Because edge-queues only store the
colors of nodes, the space required by this class is O(n3). Also,
each edge allows up to n different colors to pass through, so that
the total number of probes needed cannot exceed O(n3) for either
deadlock detection or resolution.
 (2) Time-Stamped Wait-For Pools (TSWFPa): Each time a node
initiates a probe, it attaches its color and a timestamp to it. Both
timestamp and color are used to determine if a deadlock has
occurred. [3] suggests such a scheme in the first part of the
detection phase. One purpose of timestamps is to solve the
problem which arises when the wait-for information is not
persistent‘, another is to distinguish the wait-for information
generated by different wait-for edges of the same node. Using
timestamps, the original sender can detect if a received probe
initiated by the node is out-of-date, and (hopefully) distinguish
false deadlocks from real ones. However, as explained above,
even for an
algorithm which employs two-phased locking, which guarantees
the durability of the wait-for dependency, this is not sufficient to
guarantee freedom from false deadlocks.
The only difference between this class and the class WFP is that
in this class the probes are tagged with timestampes. For this
reason, each edge will accept up to O(nz) probes, and the total
number of probes needed -is O(n4) [12]. Since each queue can
accumulate no more than O(n) different colors, the space
requirement is O(n3). Note that [3] resolves deadlocks by
regenerating WFSs which puts their algorithm in the exponential
class. 6 Conclusions In this paper, deadlock detection and
resolution in distributed systems has been considered from the
point of view of correctness
and of efficiency. To this end, upper bounds for the complexity
of corresponding algorithms have been derived, correctness
criteria have been established, and appropriate algorithms have
been
presented. As we have pointed out earlier, most incorrect
algorithms work correctly until a deadlock is detected and
resolved. As we have seen, this problem stems from the lack of

down-stream informality. In order to detect new deadlocks
correctly after old ones have been resolved, the resolution
protocol must possess down-stream informality which
eliminates nothing but the essential down-stream dependencies.
Thus, we can easily determine whether a deadlock
detection/resolution algorithm is incorrect by first checking
whether or not it has down-stream informality.
In some papers it is stated that deadlock cycles are short in
general [6], so that all algorithms perform equally well in such a
situation. However, it remains unclear whether the average
length of WFSs which are not deadlocked is short, or whether
the average number of the wait-for edges is small in a large data
base with thousands of transactions [8].
We have shown that if the goal is to detect and distinguish every
deadlock cycle, O(n!) probes are needed for n node^.^ If we do
not wish to identify each individual deadlock cycle, we only
need O(n3) probes to detect deadlocks. We have exhibited ‘for
example, if the system allows a transaction to release a lock
while the transaction is blocked.
An O(R’) deadlock detection algorithm which can identify
individual deadlocks, if a node is willing to reconstruct a partial
WFG internally. However the, computation to reconstruct the
partial WFG is not included in the complexity of this algorithm.

Two algorithms which achieve these bounds by using colors to
propagate probes, and by carefully maintaining the probes
circulating between nodes. The advantages of our algorithms
over previously proposed ones include that resolution probes
leave the maximal amount of correct information behind,
thereby saving work in subsequent detections, and that
equivalent messages can be identified so that no forwarding of
duplicates is done.
On the other hand, it is not always satisfying to let the detector
of a deadlock become the victim for the required resolution;
another problem is that several nodes may detect the same
deadlock
Simultaneously (in the absence of priorities) and, as a
consequence, several transactions are aborted unnecessarily. In
order to eliminate these drawbacks, two solutions seem feasible:
First, global information could be maintained, which requires a
central monitor, but this can easily result in new problems with
respect to the availability of the monitor, for example. Second,
semantic information on the individual transactions could be
employed if available, thereby rendering it possible to choose a
victim more carefully, and to avoid the multiple detection of a
deadlock. To this end, works could be relevant, where semantic
information on the underlying data model, the transactions itself,
or on the types of locks was shown to improve concurrency
control. These questions deserve further study.

1. References
2. Aho, A.V., Hopcroft, J., Ullman, J.D.: The Design and
3. Analysis of Computer Algorithms; Addison-Wesley

Publ.
4. Co. 1974.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1251
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

5. Badal, D.Z.: “The Distributed Deadlock Detection
Algorithm”;

6. ACM Transactions on Computer Systems 4,1986,
7. 320-337.
8. Chandy, K.M., Misra, J.: “A Distributed Algorithm for
9. Detecting Resource Deadlocks in Distributed Systems”;
10. PTOC. 1st ACM Symposium on Principles of

Distributed
11. Computing 1982, 157-164.
12. Choudhary, A.N., Kohler, W.H., Stankovic J.A.,

Towsley,
13. D.: “A Priority Based Probe Algorithm for Distributed
14. Deadlock Detection and Resolution”; Proc. 7th ZEEE Int.
15. Conference on Distributed Computing Systems, Berlin,
16. West Germany, 1987,162-168.
17. Elmagamid, A.K.: “A Survey of Distributed Deadlock
18. Detection Algorithms”; ACM SIGMOD Record 15 (3)
19. 1986), 37-45.
20. Gray, J., Homan, P., Obermarck, R., Korth, H.: “A Straw
21. Man Analysis of Probability of Waiting and Deadlock”;
22. IEM Research Report RJ 3066, San Jose 1981.
23. Haas, L.M., Mohan, C.: “A Distributed Deadlock

Detection
24. Algorithm for a Resource-Based System”; IBM Research
25. Report RJ 3765, San Jose 1983.
26. Howard, J., Kazar, M., Menees, S., Nichols, D.,

Satyanarayanan,
27. M., Sidebotham, R., West, M.: “Scale and
28. Performance in a Distributed File System (extended

abstract)”;
29. Proc. 11th ACM Symposium on Operating Systems
30. Principles, Austin,

IJSER

http://www.ijser.org/

