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Abstract 
 
A study on Deadlock detection is being done for many years. Not much work has been done on Deadlock resolution. 
Wait –for model approach followed to avoid deadlocks offers incorrectness to many algorithms after deadlocks have been resolved. 
 In this paper, a theoretical framework for wait-for systems is provided, and general characteristics of a correct algorithm for deadlock 
detection and resolution are presented. 
It is shown that the computational upper bounds(number of messages) for deadlock detection and resolution are both O(n3) in the worst 
case when n transactions are involved. This result is better than previous ones, which often are even exponential. In addition, two correct 
deadlock detection and resolution algorithms are described which both achieve these upper bounds. 
 
Keywords : Mobile Agents, distributed computing, wait –for model, complexity. 
 
1. Introduction 
In recent years, a large number of algorithms for deadlock 
detection in distributed computing systems has been proposed. 
In the area of distributed databases, to which the attention is 
restricted in this paper, deadlock situations arise when locks on 
data objects are used in scheduling concurrent transactions. As a 
consequence, deadlocks need to be detected and then resolved .  
As has been pointed out by these and other authors , three 
problems arise in many of these proposals: First, some of them 
are incorrect in that they may either detect false deadlocks, or fail 
to detect real ones. 
Second, deadlock resolution is sometimes neglected  or not 
handled properly ; the latter is often the reason for errors 
occurring in the detection of (subsequent) deadlocks, since the 
wait-for relationship maintained by the algorithms is not 
updated correctly. Third, not enough attention is paid to the 
computational complexity of deadlock detection and resolution. 
For example, proposes an algorithm requiring the transmission 
of exponentially many messages for deadlock detection in the 
worst case, which is unacceptable in practical applications. 
 
These three problems are addressed in this paper. We begin by 
providing a theoretical framework for wait-for systems that are 
employed to model a distributed environment, as it pertains to 
scheduling concurrent transactions. We then show that the 
upper bound for the number of messages to be transmitted 
during deadlock detection and resolution (and hence the overall 
time 
complexity) is O (n3  ) when n transactions are involved. Next, 
we investigate how these results obtained for a static  
situation carry over to the dynamic case as well. To this end, we 
give a characterization of when a deadlock detection and a 
resolution algorithm is “correct”, respectively. Finally, two 
algorithms are presented, which differ in the use of priorities 
assigned to nodes of a wait-for graph, and it is shown that both 
are correct and achieve the upper bounds derived earlier. It 

should be pointed out that other recent papers also address the 
issues discussed here. In particular, [9] gives a thorough 
evaluation of various algorithms for deadlock detection 
(neglecting resolution), and discusses many issues related to 
them. Also, the work of Roesler  is notable in this context for its 
detailed discussion of all three problems mentioned above, and 
for the provision of polynomial  and provably correct solutions. 
The model used in these papers is an object-oriented one based 
on abstract data types, so that the approach is only partially 
comparable . 
 
The organization of this paper is as follows: In Section 2, we 
introduce a graphical model for wait-for systems. This model 
will allow us to derive precise upper bounds for the complexity 
of deadlock detection and resolution algorithms; to this end, we 
will show (1) that the upper bound on time is O(n3) for both 
detection and resolution, and (2) that the upper bound on space 
is O(n3),w here n is the number of transactions/processes 
involved. In Section 3, we consider the dynamic case, in which 
the complete wait-for graph is changing over time. Criteria for 
correct deadlock detection in this case are provided. We present 
two new algorithms for deadlock detection and resolution in 
Section 
4, which actually achieve the upper bounds. In Section 5 we 
survey previous work in some more detail and in particular 
exhibit a classification of relevant algorithms which captures 
their essential 
features. Finally, we sketch several questions that deserve 
further study in Section 6. 
 
 
2. Wait-For Systems: The Model and Its Static View 
In this section, we present our model of a (distributed) system 
which, due to the use of locks in the scheduling of transactions, 
is subject to deadlocks and hence calls for their detection and 
resolution; we assume that deadlocks are indeed possible in the 
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system, and we are therefore not interested in algorithms for 
deadlock prevention. 
Informally, in such a system there exist processes or transactions 
which operate on shared resources; any available resource can be 
used by several transactions at a time in shared mode, or 
by at most one at a time in exclusive mode. If a resource is in 
(exclusive) use, any other transaction trying to access it has to 
wait for the first to release the resource. A deadlock occurs when 
two or more transactions are waiting for each other in a cyclic 
manner. 
 In a distributed computing system, typically no single site has 
full knowledge of the entire system; thus, we assume, without 
loss of generality, that upon the occurrence of a resource conflict, 
each transaction or process must react accordingly (by sending 
messages) and independently (without reporting to a central 
site). 
Formally, such a wait-for system can be modeled using a 
directed graph, the wait-for graph (WFG), defined next. 
Definition 1 (Wait-For Graph) A wait-for graph (WFG) G = (V,E) 
is a directed graph, where the set V of nodes represents 
processes or transactions, and the set E of edges represents 
resource  dependencies between nodes s.t. an edge e from v1 to 
v2 indicates that v1  is waiting for v2  to release a resource. 
Nodes having out-degree zero are called active; all others are 
called blocked.  
 
This model will serve as a standard metric to analyze the 
complexity of deadlock detection/resolution algorithms. We also 
assume that any WFG G under consideration has no self-loops 
on nodes. A sample WFG is shown in Figure 1. In order to 
describe a (possibly transitive) dependency between two distinct 
nodes, it is convenient to talk about one path through a WFG at 
a time: 
 
Definition 2 (Wait-For String) Let G = (V,E)b e a WFG. A wait-for 
string (WFS) S is a path through G (without loops). Every node v 
E V appearing in S has at most one incoming and one outgoing 
edge, and there exist at most two nodes r, h E V s.t.  r has no 
incoming edges, whereas h has no outgoing edges.  r is called the 
root or tail of S, and h is called its head. 
 
For example, in Figure 1 (v1,v3,v4) is a wait-for string. The next 
definition introduces useful shorthands for a further discussion 
of wait-for strings: 
 
Definitions 3 (Down-Stream, Up-Stream) Let G = (V,E ) be a 
WFG, and let v E V. The down-stream of v, denoted DS(v), 
consists of all nodes in V for which v is either directly or 
indirectly waiting, i.e., the nodes v' E V s.t. v is followed by v' in 
a WFS S. Similarly, the up-stream of v, denoted US(v), consists 
of all nodes in V which are waiting for v directly or indirectly, 
i.e., all nodes preceding v in S. The edges of v'S  down-stream 
[up-stream] are called the down-stream [up-stream] edges of 
v,resp. 

A down-stream DS(u) is called essential to U if no node U' of the 
upstream of U can reach a node in the down-stream without 
passing through U, i.e., U' cannot bypass U on another 
downstream. 
An essential down-stream node & of node U is a downstream 
node of U s.t. for every path formed between a node d, d E US(u) 
U{v}, and k, this path must include U. The outgoing 
edges of k are called the essential down-stream edges of U. Note 
that an articulation point [I] is always an essential downstream 
node of its upstream nodes, but the reverse is not true in 
general. 
In the example above, {v3,v2,v4} = DS(v1), {v1,v2,v3} = US (v4 ) , 
and {v2 ,v4 }=D S(v3) is essential to v3. We now consider a static 
situation in which some WFG G is given, and there exists an 
"oracle" that is able to tell us about cycles. Our first result, which 
is interesting in its own right, shows 
that in an arbitrary graph G = (V,E), there are exponentially 
many cycles in the worst case: 
Lemma 1 Let G = (V,E)be a WFG, I V I= n. Then there are up to 
O(n!) cycles in G. 
Proof. For n nodes, the possible cycles are formed by 2 nodes, 3 
nodes, . . ., and n nodes, and for each cycle involving i nodes, 
there are (i - I)! possible permutations. Since each permutation 
yields a different cycle, the total number of possible cycles 
results from a summation of C(n,2), C(n,3), . . ., C(n,n), where C 
is the combinatorial selection function, i.e., the total number of 
cycles 
equals n! = z-E O(n!) our claim follows. 
Since it is thus impossible in practice to keep track of all cycles in 
a WFG, we next explore a possibility to detect all cycles in a 
given WFG without explicitly tracking them: Given a WFG 
G, let cyc(G) denote the set of all cycles in G, each of which 
represents a deadlock situation. If G has nodes 1, . . . , n, we can 
distribute the members of cyc(G) into n groups (to which we 
refer as cycle-break pupa throughout the paper) GI,. . . ,Gn s.t. a 
cycle C E cyc(G) belongs to G; if i E C. Now we have: Lemma 2 If 
G;, , . . . , G;*-, is a selection of n - 1 distinct cycle break groups, 
then 
n- 1 U Gij = cyc(G) j=1 
Proof. Assume, on the contrary, that the union of all groups in 
the given selection does not equal cyc(G). Then there must be a 
cycle C E cyc(G) which is not in Gij for each j E (1,. . . , n - 
1). Thus, cycle C does not go through nodes  i1 , .. . ,i n-1 which 
implies that C goes through the one node  in only, a 
contradiction to the exclusion of self-loops on nodes. We next 
consider the (time and space) complexity of cycle detection and 
resolution. Since we are considering a static case, let a WFG G be 
given, and let G contain cycles. (Notice that depth-fist search as 
described in [1] cannot be applied due the fact that we consider a 
distributed environment.) In order to detect the cycles, we color 
the edges of G, using the oracle, in such a way that a unique 
color corresponds to each individual cycle-break group. Thus, an 
edge will be assigned as many colors as there are cycles in which 
it appears. Then, in order to break a cycle, colors are removed 
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from edges as appropriate, again by referring to the oracle. We 
assume that each addition or removal of a color to or from a 
single edge can be performed in one unit of time, and that each 
color needs one unit of space. Now we have: Theorem 1 (Upper 
bound for detection) To detect all cycles in a given WFG with n 
nodes, the maximum number of operations needed is O(n3). 
Proof. By Lemma 2, if we can detect n - 1 of the n possible cycle-
break groups, then we can detect all cycles in G. If each such 
group is identified by a different color, then each edge in a WFG 
will be colored at most n - 1 times. Since there are at most (n - 1)n 
edges in G, we only need (n - 1)(n - 1)n coloring operations to 
detect all cycles, which is O(n3). 
Notice that in the above theorem, we do not distinguish between 
deadlock cycles which belong to the same cycle-break group. 
Corollary 1 (Upper bound for resolution) To break all cycles, at 
most O(n3) operations are needed. 
Proof. As in Theorem 1, each edge can get at most n - 1 colors; 
thus, to remove all colors, an edge has to be accessed up to n – 1 
times. Since there are <= (n - 1)n edges, this requires <= (n -1 ) ( n 
- 1)n 
 E O(n3) steps. 
By similar arguments, we can easily obtain an upper bound of 
O(n3) for the space requirement of a given WFG with n nodes. 
The next question that we consider is if and how these upper 
bounds can actually be achieved, since an "oracle" will not be 
available in reality. After this, we apply the techniques obtained 
to the (more realistic) dynamic case in the next section.  
 We exhibit a (static) method for keeping track of wait-for 
dependencies next. As a consequence of the above results, we 
adopt the cycle-break group idea as follows: 
We assign each node a unique color. In order to detect cycles, we 
color the edges in the WFG as before by sending the color of a 
node along all its outgoing edges in a coloring probe; whenever 
a color is received by some node, it forwards it further. To break 
cycles, edge-colors are removed by sending around cleaning 
probes. Each addition or removal of a color to or from a single 
edge is counted as one step. Every coloring or cleaning probe 
needs one unit of space (for storing the representation of a color). 
When a coloring probe visits an edge, the edge stores the color 
carried by the probe, and the edge is said to be colored with that 
color. When a cleaning probe visits an edge, the color carried by 
the probe is removed if the edge was colored with it. 
(We assume that both the edges and the nodes in the WFG can 
pile as many colors as required.) 
A cycle with color c is detected if a probe tagged with c is 
returned to the node colored by c. Similarly, a cycle with color c 
is resolved, if c is erased from every edge of the cycle colored 
with c. A colored cycle C cannot simply be broken by erasing the 
color of C from all corresponding edges, since this color is not 
confined within that cycle only. Following the routes of a 
coloring 
process, the down-stream edges of a node U are colored with the 
same color as v, which is indicated by "v-c*-> w", where the 
asterisk indicates a (direct or indirect) wait-for relationship, and 

w E DS(v). (To simplify our discussion, we will omit the symbol 
c whenever confusion can be excluded.) The above indicates that 
we need to erase c from all edges corresponding to the 
downstream of v, if v is chosen as the victim. In order to erase 
the exact amount of the colors, we must proceed carefully. 
Consider the example in Figure 2, which is identical to that in 
Figure 
1 except we associate colors with the wait-for edges. We also list 
some of the wait-for dependencies which are relevant to our 
discussion; note that not all nodes on a cycle are always capable 
of detecting a deadlock.  
Here we assume that colors a, b,c, and d are assigned to nodes 
v1,v2,v3, and v4, respectively. If v3 is chosen as the victim, all 
colors should be erased from the  edges (v3,v2) and (v2,v3). In 
addition, colors a, b and c need to be removed from edge (v3,v4). 
On the other hand, if v2 is chosen as the victim, b should be 
removed from edge (v3,v4), but not a and c. Thus, the relation v1 
of v4 still exists, because the deletion of node v2 should not affect 
the wait-for condition between v1 and v4.It follows that before 
we can determine the cost of a deadlock detection and resolution 
algorithm, we need to know what makes a dynamic algorithm 
correct. The next section addresses this question.  
 
3 The Dynamic Case and its Correctness 
Criteria 
In a dynamic situation, a given WFG changes over time. In 
addition, the problem of message-propagation delay in the 
distributed system arises. As a consequence, the model 
presented 
above has to be slightly modified in order to reflect the dynamic 
situation; in particular, we make the following assumptions: (1) 
The underlying computer network is fault-free. (2) No messages 
are received in error. (3) All messages arrive at their respective 
destination in finite time. Properties 1 and 2 free us from the 
problems which are related to faults. After a node sends out a 
resource request, but before this request has been acknowledged, 
the node is in an idle state. During the idle period, the node will 
not process any new probes received. Because of Property 3, the 
period of the idle state is finite, and there is no possibility for a 
node to wait forever. 
First we introduce a notion which captures the correct wait for 
relationship between victims and  
heir down-streams: 
Deflnition 4 (Down-Stream Informality) Let A be an algorithm for 
cycle resolution. Suppose that A is applied to a cycle C, and that 
during the resolution of the deadlock represented by C node U is 
chosen as the victim to break C. If the set R of inward colors of U 
is removed from every edge in the essential down-stream of U, 
then we say that A has down-stream infomality.We turn to the 
issue of correctness next. Clearly, a deadlock detection algorithm 
is correct if it detects all real cycles and no false ones; a deadlock 
resolution algorithm is correct simply if it is able to resolve a 
deadlock. However, since distributed systems face the problem 
of propagation delay of messages, a cycle detection and 
resolution algorithm may detect false cycles due to this delay. 
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Clearly, this factor is difficult to eliminate and will therefore not 
be considered further here. 
In [21] it is claimed that a DBMS employing 2PL will not 
introduce false deadlocks. However, this is not true in general, 
since after a deadlock has been detected and resolved, false 
deadlocks can still be detected under several circumstances; to 
see this, the algorithm described in [17] (which employs 2PL) can 
be taken as an example. [20] and [4] have shown that [17] either 
detects false deadlocks or ignores real deadlocks under several 
circumstances. 
Thus, the use of 2PL is neither sufficient nor necessary for correct 
deadlock detection. 
Another problem that should be taken into consideration can be 
seen from the following example. Consider Figure 2 once more: 
After u3 has been chosen as the victim and before the 
corresponding 
message can be received by node u4, a new edge introduced 
between nodes u2 and u4 will let the algorithm conclude that a 
new cycle is formed among u2, u3 and u4. For this reason, we 
assume there is no time delay when considering whether an 
algorithm is correct. Now the following is obvious: 
 
Lemma 3 A cycle detection algorithm is correct if it can calculate either 
all WFSs or all cycle-break groups. 
Proof. The first condition is obvious. For the second, it follows 
from Lemma 2 that every cycle belongs to certain cycle-break 
groups. Thus, detecting all cycle-break groups actually detects 
all deadlocks. 
Lemma 4 A cycle resolution algorithm is correct if and only if it 
has down-stream informality. 
Proof. When a cycle is broken by deleting a victim node v and its 
adjacent edges from a WFG, the following issues have to be 
addressed: 
The set R of inward colors of v is removed completely from the 
cycle-break group Gv , v  is removed completely from the 
essential downstream edges of v. The former means that all wait-
for dependencies passed through the victim node v must be 
removed completely. Because after v is removed, any node k E 
US(v) may not wait for nodes w E DS(v),and the wait-for 
information stored in any such w should be updated 
accordingly. The latter states how the wait-for information 
should be modified. The claim of the lemma can now be proven 
as follows: (only if) This direction is obvious, since a correct 
algorithm should erase the victim’s color from every essential 
down-stream edge. 
(if) Down-stream informality actually says that a color c E R will 
be removed from an edge e E DS(u) if and only if there are no 
paths which can be used to pass a c-colored probe to e other than 
through v. Informality, thus, guarantees to remove the 
dependency between U and its down-stream correctly. 
By Lemmas 3 and 4, we have: Theorem 2 (Correct 
detection/resolution requirements) 
A cycle detection and resolution algorithm is correct if it satisfies 
the following two conditions: 

1. The algorithm calculates all WFSs or all cycle-break groups. 2. 
When a cycle is broken, it has down-stream informality. 4 
Efficient Dynamic Algorithms When a WFG is dynamically built 
and modified according to the propagation of probes, it is 
impossible to know in advance which nodes will participate in a 
cycle and therefore become candidates for victims. On the other 
hand, no more than n victims can be chosen in a WFG that has n 
nodes. Even though there are no more than n - 1 cycle-break 
groups, in order to keep track of all possible cycles and non-
cycles we will assign each node a unique color. We first 
introduce a correct cycle detection/resolution algorithm which 
stays within the upper bounds established earlier. The algorithm 
is then modified to reduce its average cost to one half the worst 
case cost by introducing priorities. 
4.1 A Naive Algorithm 
Every node is assumed to have a unique color. A node generates a 
coloring probe for each outgoing edge at the time the edge is fist 
generated. A coloring probe is received and forwarded unless 
the received color is identical to the color of this node, in which 
case a cycle is detected. Next, a cleaning probe is generated by 
the detector which itself is the victim. Now note that every edge 
in a WFG can be colored up to n times for a WFG with n nodes. 
Thus, in order to color all cycles in a dynamic setting, n2(n - 1) 
coloring probes are needed, which is still O(n3). Corollary 2 To 
dynamically color and detect all the cycles in a WFG G = (KE) , 
where IV( = n, at most O(nS) coloring probes are needed. 
Corollary 3 To break all possible cycles in a dynamic 
environment, the number of cleaning probes is O(n3) in the 
worst case. 
The following algorithm is divided into two parts, which are to 
be executed in an alternating fashion. Part 1 deals with detection, 
while Part 2 handles resolution. As in the static case, a node is 
considered to be active if it has no outgoing edges, and it is 
considered blocked otherwise. We use the following notation: 
The set of inward colors of node a, i.e., the union of the colors of 
each incoming edge of i, is denoted e;, and the set of the colors in 
an edge (k, i) is denoted coZ(k, i). Also, let 0; be the union of the 
color of node i and its inward colors 0;. Each outgoing edge of 
node i has exactly the same color set as @i. 
 
Algorithm I: Cycle Detection 
 
Initialization Every node i is assigned a unique color r; Probe 
Initialization If a node i is blocked by another node j, an edge (i, j 
) is created, and for each color r, E Oi, node I sends a coloring 
probe to this (i, j ) edge. at edge (k, i), the following steps are 
performed: 
Probe Propagation When a probe r, is received by a node i 
1. check for cycles. A cycle is found if a node receives its own 
color back. If a cycle is found, the probe propagation phase is 
terminated and the cycle resolution protocol is executed. 
Otherwise, continue with the next step. 
2. r'' e {r,} - 0; 
3. coZ(k,i) -+ rpUcoZ(k,i) 
4. Forward the new probe r', to every outgoing edge if 
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{+,} # 0. Otherwise, or if there are no such edges, rlp 
is discarded. 
Algorithm I: Cycle Resolution 
Cleaning Probe Initialization The node i which detects the cycle 
removes itself from the cycle by switdring to the aborting phase: 
For every color k E @; a cleaning probe is created and sent to all 
its outgoing edges; then the aborting node i deletes all its 
adjacent edges and itself from the WFG. 
Cleaning Probe Propagation When an node I receives a cleaning 
probe r, through the edge (IC, i), the following steps  are 
executed: 
1. coZ(k,i) -+ coZ(h,i) - r, 
2. r', + {r,} - 0; 
3. if there are no outgoing edges then r', is discarded, and 
the probe propagation is terminated. Otherwise, the 
next step is executed. 
4. Forward the new probe r> to every outgoing edge if 
{ri} # 0; otherwise r> is discarded. 
5. a new owner is elected, if available, from the waiting 
nodes, and a new cycle detection phase starts by 
entering the probe initialization phase for all waiting 
nodes. 
It should be noted that when a node is in the phase of either 
committing or aborting, it will not forward any probes. 
Theorem 3 Algorithm I is correct. 
Proof. To show that Algorithm I is correct, we first show that it 
detects all cycle-break groups; then we show that it possesses 
down-stream informality. Since edges and probes can be created 
only due to resource waiting (probe initialization), a node 
receiving its own color indicates that there is a cyclic wait 
condition, and a cycle-break group is found. Step 3 of the cycle 
detection phase assures that the edges faithfully record all 
passing colors. 
Step 3 combined with Step 2 optimizes the algorithm; Steps 2 
and 4 guarantee that the color of every cycle-break group will be 
forwarded along the group's wait-for paths. Thus, all WFSs will 
be properly visited; hence, the algorithm detects all cycle-break 
groups. 
To see that Algorithm I possesses down-stream informality, we 
notice that a victim passes every color which it has received 
(including its own) to its down-stream. Step 2 of the resolution 
phase forwards a cleaning color if and only if it is essential. Thus, 
Algorithm I has down-stream informality. 
Theorem 4 Algorithm I achieves the upper bounds given 
previously. 
Proof. During the detection phase, Step 2 allows only new colors 
to pass through each node. Therefore, each color probe can paint 
an edge only once. Hence, at most O(n3) probes are transmitted, 
assuming the wait-for system contains n nodes. In the resolution 
phase, Step 2 assures that a cleaning probe of a particular color 
can traverse any edge only once. Hence, the number of cleaning 
probes transmitted is also O(n3). Our claim follows. 
Corollary 4 For an exclusive-lock only wait-for system, the 
minimum number of probes for the worst case is O(n2). 

Proof. If we allow exclusive locks only in the wait-for system, 
there is at most one outgoing and one incoming edge for each 
node, which implies that there are O(n) edges in total. Thus, only 
O(nz) probes are needed to detect and resolve all possible cycles. 
'This algorithm is similar to the one given in [13]; however, with 
the optimization in Step 4, we cut the number of the probes 
needed from exponentidy many to O(n'). 'The owner of a 
resource is a transaction not blocked at this resource. 
4.2 A Priority Based Algorithm 
We next describe how Algorithm I can be improved. To this end, 
we observe that if a cycle involves nodes kl, kz,. . . , k,, only one 
node needs to send a probe and detect the cycle. It remains to 
determine which one should be selected as the sender of this 
probe. If a total ordering3 is imposed on the colors of all nodes 
and a color Tk is forwarded by node i if and only if t k > r; holds, 
it can be shown that this prioritized protocol needs 
approximately one half of the amount of probes transmitted by 
Algorithm I. Note that similar approaches have been proposed in 
[2,14,17,20]. 
Lemma 5 For a totally ordered cycle, only the probe with the 
highest priority detects the cycle. 
Proof. First note that for every cycle there is a node which has 
the highest priority, because the nodes are totally ordered. Next 
we assume each node assigns the probes initiated from it with its 
own priority. To detect a cycle, a probe must walk through every 
node of the cycle. If a probe a is passed through every node, 
then, according to the probe propagating rule, r; > t k , for every 
k in 
the cycle, and k = i. Thus, t; must have the highest priority. 
Theorem 5 The average number of probes needed to detect 
deadlocks for a prioritized algorithm is one half of the amount 
compared to naive algorithm. 
Proof. Without loss of generality, we assume that there are n 
nodes, and these are assigned the priorities { 1, . . ., n }, where 1 is 
the highest. The number of times each edge leaving a node 
of highest priority can be colored is one. Similarly, this number is 
two for the node with the second highest priority, and so on. 
Hence, the total number of probes is (1 +- 2 +- . . . +- n) .n - 1. The 
last n - 1 indicates that there are n - 1 possible outgoing edges per 
node. 
We next modify Algorithm I by replacing the former Step 2 of 
the Probe Propagation Phase with a new one as follows: 
Algorithm 11: Cycle Detection 
Initialization (as in Algorithm I) Probe Initialization (as in 
Algorithm I) 
Probe Propagation When a probe rp is received by a node a at 
edge (k, i), the following steps are performed: check for cycles. A 
cycle is found if a node receives its own color back. If no cycles 
are found then continue; otherwise, start the resolution protocol. 
if rp < col(i) then discard rp; otherwise, fp e {tp} -oi. 
coZ(k, i) -e r; U coZ(k,i) 
if rp > r; then forward rp to every outgoing edge of 
node i. The cycle resolution protocol is the same as for Algorithm 
I. 
Corollary 5 Algorithm 11 is correct. 
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Proof. The only difference between Algorithms I and 11 is that 'A 
total ordering can be created using Lamport's algorithm [lo]. the 
priorities are introduced in Step 2 of the detection phase. 
Thus, by Theorem 2 and Lemma 5, Algorithm I1 is correct. 
Corollary 6 The priority based algorithm achieves the upper 
bounds. 
Proof. The claim follows immediately from Theorem 5. 
5 A Taxonomy of Deadlock-Handling Algorithms 
In order to study the complexity of distributed deadlock 
detection and resolution algorithms proposed previously and to 
compare them to our approach, we divide them into two groups 
according to how the wait-for information is passed by the 
detection and resolution protocols. We further divide each group 
into two subgroups, and for each subgroup, we briefly analyze 
its computation and storage costs. 
5.1 Structured Protocols 
Protocols which pass probes that contain structural wait-for 
information are called strrcturedprotocols. By using the 
structural wait-for information collected from the probes, a 
partial wait-for graph can be constructed at each node, and these 
nodes can use their WFGs to determine if a deadlock cycle is 
formed and which parties are involved. Structured protocols can 
be further classifled according to the degree of structural 
information held by probes: 
(1) Wait-For Strings (WFSs): Every node passes the probes which 
contain WFSs to its down-stream. The algorithms reported in 
[7,14,2,20]fa ll into this class. A deadlock is detected if a node h d 
s a cycle in a WFS that just arrived. 
The advantage of using WFSs is that deadlock detection is easy, 
and that all parties involved are instantly known to the detector. 
An obvious disadvantage is that WFSs have variable lengths 
which makes probe transmission and storage more difficult. 
Given a WFG G = (V, E) with n nodes, there may be O(n!) cycles 
by Lemma 1; hence, there exist O(n!) possible wait-for strings. 
According to the algorithm, each wait-for string is allowed to 
pass through a node only once. This means that each node can be 
traversed approximately O(n!) times, so that O(n!n) probes are 
needed to detect all possible deadlocks. With respect to space 
required, the size of a wait-for string is limited to be less than or 
equal to n, and there are only n! possibilities, because 
the merge option always keeps the longest WFS with the same 
permutation. Therefore, O(n!n) space is needed. On the other 
hand, deadlock resolution is cheaper w.r.t. the number of 
cleaning probes needed: Since only the color of the victim is 
included in the probe, no matter how many wait-for strings are 
stored in an edge, the total number of the colors contained in an 
edge does not exceed n - 1. Now it is easily versed that the 
maximum number of probes needed to resolve all deadlocks is 
O(n3). 
As an example, consider Figure 3: Node N, receives the three 
WFSs < Nl,N3 >, < N5,N3 >, and < N2,N3 >, and node Nz has 
WFSs < NI, N3 >,< N5, Ns >, and < N3 >. 
Figure 3: A Wait-For System and its Dependencies. 

(2) Wait-For Edges (WFEs): In this class, probes contain the wait-
for edges of nodes only. A deadlock is detected if an incoming 
edge contains the color of the receiving node. [ll] uses this 
approach to build a partial global WFG at each site from which a 
transaction joins the system. In [3] this scheme is used to 
construct a WFG in the second part of the detection phase. This 
approach has the advantage that every probe has a k e d size. For 
instance, in Figure 3 node N2 receives (NI, N3), 
(NS,N3), (N3rN2), and node N4 receives (Nl,N3), (NZ,N3), (N3, 
N4), and (Ns, N3). Whether the number of probes passed in this 
approach exceeds the WFS protocol described above actually 
depends on the topology of the wait-for system. The complexity 
of this class for the worst case is better than that of the WFS class. 
To detect deadlocks, each edge lets no more than O(n2) probes 
pass. This is due to the fact that no edge is forwarded which has 
been encountered earlier, and there are at most O(n2) edges. 
Thus, the total number of probes needed to detect all deadlocks 
is O(n4). 
To resolve deadlocks, the same complexity is obtained. 
However, this can easily be improved as follows: Since the wait-
for strings can be reconstructed from the wait-for edges, only the 
victim’s color needs to be sent. Thus, the cost of resolution is 
identical to that of the class WFS. Finally, the space requirement 
is O(n4), since each edge may store up to O(nz) edges.  
Because edge-queues only store the colors of nodes, the space 
required by this class is O(n3). Also, each edge allows up to n 
different colors to pass through, so that the total number of 
probes needed cannot exceed O(n3) for either deadlock detection 
or resolution. 
(2) Time-Stamped Wait-For Pools (TSWFPa): Each time a node 
initiates a probe, it attaches its color and a timestamp to it. Both 
timestamp and color are used to determine if a deadlock has 
occurred. [3] suggests such a scheme in the first part of the 
detection phase. One purpose of timestamps is to solve the 
problem which arises when the wait-for information is not 
persistent‘, another is to distinguish the wait-for information 
generated by different wait-for edges of the same node. Using 
timestamps, the original sender can detect if a received probe 
initiated by the node is out-of-date, and (hopefully) distinguish 
false deadlocks from real ones. However, as explained above, 
even for an 
algorithm which employs two-phased locking, which guarantees 
the durability of the wait-for dependency, this is not sufficient to 
guarantee freedom from false deadlocks. 
The only difference between this class and the class WFP is that 
in this class the probes are tagged with timestampes. For this 
reason, each edge will accept up to O(nz) probes, and the total 
number of probes needed -is O(n4) [12]. Since each queue can 
accumulate no more than O(n) different colors, the regenerating 
WFSs which puts their algorithm in the exponential class. 
5.2 Non-Structured Protocols 
If probes contain no structural wait-for information, the 
corresponding algorithm is called non-structured. In this case no 
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waitfor graphs can be constructed. However, this does not 
prevent 
a deadlock/resolution algorithm to detect and resolve deadlocks. 
Non-structured protocols can be classified as follows: 
(1) Wait-For Pools (WFPs): Only the nodes’ colors are put into 
the probes and propagated. Since a deadlock is detected by 
finding that a probe returns to its original sender, algorithms 
adopting this method only need to see if the color of a node is in 
the “pool” of received probes. This pool represents the wait for 
relationships space requirement is O(n3). Note that [3] resolves 
deadlocks by 
between the receiving node and the nodes whose colors are in 
the pool, even though the detailed wait-for structure is not 
known. Our algorithms described in Section 4 fall into this class. 
The approach is not only conceptually simple, but also gives the 
best performance. The size of a probe can be either fixed or 
variable. This scheme is also partially implemented by the naTve 
protocol suggested in [13]. Because edge-queues only store the 
colors of nodes, the space required by this class is O(n3). Also, 
each edge allows up to n different colors to pass through, so that 
the total number of probes needed cannot exceed O(n3) for either 
deadlock detection or resolution. 
 (2) Time-Stamped Wait-For Pools (TSWFPa): Each time a node 
initiates a probe, it attaches its color and a timestamp to it. Both 
timestamp and color are used to determine if a deadlock has 
occurred. [3] suggests such a scheme in the first part of the 
detection phase. One purpose of timestamps is to solve the 
problem which arises when the wait-for information is not 
persistent‘, another is to distinguish the wait-for information 
generated by different wait-for edges of the same node. Using 
timestamps, the original sender can detect if a received probe 
initiated by the node is out-of-date, and (hopefully) distinguish 
false deadlocks from real ones. However, as explained above, 
even for an 
algorithm which employs two-phased locking, which guarantees 
the durability of the wait-for dependency, this is not sufficient to 
guarantee freedom from false deadlocks. 
The only difference between this class and the class WFP is that 
in this class the probes are tagged with timestampes. For this 
reason, each edge will accept up to O(nz) probes, and the total 
number of probes needed -is O(n4) [12]. Since each queue can 
accumulate no more than O(n) different colors, the space 
requirement is O(n3). Note that [3] resolves deadlocks by 
regenerating WFSs which puts their algorithm in the exponential 
class. 6 Conclusions In this paper, deadlock detection and 
resolution in distributed systems has been considered from the 
point of view of correctness 
and of efficiency. To this end, upper bounds for the complexity 
of corresponding algorithms have been derived, correctness 
criteria have been established, and appropriate algorithms have 
been 
presented. As we have pointed out earlier, most incorrect 
algorithms work correctly until a deadlock is detected and 
resolved. As we have seen, this problem stems from the lack of 

down-stream informality. In order to detect new deadlocks 
correctly after old ones have been resolved, the resolution 
protocol must possess down-stream informality which 
eliminates nothing but the essential down-stream dependencies. 
Thus, we can easily determine whether a deadlock 
detection/resolution algorithm is incorrect by first checking 
whether or not it has down-stream informality. 
In some papers it is stated that deadlock cycles are short in 
general [6], so that all algorithms perform equally well in such a 
situation. However, it remains unclear whether the average 
length of WFSs which are not deadlocked is short, or whether 
the average number of the wait-for edges is small in a large data 
base with thousands of transactions [8]. 
We have shown that if the goal is to detect and distinguish every 
deadlock cycle, O(n!) probes are needed for n node^.^ If we do 
not wish to identify each individual deadlock cycle, we only 
need O(n3) probes to detect deadlocks. We have exhibited ‘for 
example, if the system allows a transaction to release a lock 
while the transaction is blocked. 
An O(R’) deadlock detection algorithm which can identify 
individual deadlocks, if a node is willing to reconstruct a partial 
WFG internally. However the, computation to reconstruct the 
partial WFG is not included in the complexity of this algorithm. 
 
Two algorithms which achieve these bounds by using colors to 
propagate probes, and by carefully maintaining the probes 
circulating between nodes. The advantages of our algorithms 
over previously proposed ones include that resolution probes 
leave the maximal amount of correct information behind, 
thereby saving work in subsequent detections, and that 
equivalent messages can be identified so that no forwarding of 
duplicates is done. 
On the other hand, it is not always satisfying to let the detector 
of a deadlock become the victim for the required resolution; 
another problem is that several nodes may detect the same 
deadlock 
Simultaneously (in the absence of priorities) and, as a 
consequence, several transactions are aborted unnecessarily. In 
order to eliminate these drawbacks, two solutions seem feasible: 
First, global information could be maintained, which requires a 
central monitor, but this can easily result in new problems with 
respect to the availability of the monitor, for example. Second, 
semantic information on the individual transactions could be 
employed if available, thereby rendering it possible to choose a 
victim more carefully, and to avoid the multiple detection of a 
deadlock. To this end, works  could be relevant, where semantic 
information on the underlying data model, the transactions itself, 
or on the types of locks was shown to improve concurrency 
control. These questions deserve further study. 
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